This is an Opt In Archive . We would like to hear from you if you want your posts included. For the contact address see About this archive. All posts are copyright (c).

- Contents - Hide Contents - Home - Section 6

Previous Next

5000 5050 5100 5150 5200 5250 5300 5350 5400 5450 5500 5550 5600 5650 5700 5750 5800 5850 5900 5950

5100 - 5125 -



top of page bottom of page up down


Message: 5100 - Contents - Hide Contents

Date: Mon, 15 Jul 2002 18:59:29

Subject: Re: A common notation for JI and ETs

From: gdsecor

--- In tuning-math@y..., David C Keenan <d.keenan@u...> wrote [#4532]:
> [a lengthy reply] ... > > Whew! > > With that I must sadly inform you that I will not be able to
contribute to this discussion again for quite some time. I need to get seriously involved in an electronic design project for some months now. The trouble is I'm a tuning theory addict. I can't have just a little.
> > George, I strongly encourage you to present what we've agreed upon
so far, to the wider community for comment.
> > Regards, > -- Dave Keenan Dave,
Thank you for your latest comments and ideas. It will take me some time to digest and thoughtfully consider all of what you discussed. I have also been busy with other things for the past few weeks and will not be looking at this in detail for at least a few more, at which time I will be able to review all of this with a fresher perspective. So I expect that it will be at least a month before I present anything about what we have accomplished. And once that's started, I imagine that it's going to take a while to cover, given that there will probably be a lot of questions. So let's both enjoy our summer break. Best regards, --George
top of page bottom of page up down


Message: 5101 - Contents - Hide Contents

Date: Mon, 15 Jul 2002 16:46:41

Subject: Yet another arrgangement of 7-limit linear temperaments

From: Gene W Smith

This time I used symmetrical geometric complexity; the result probably
seems less plausible, but in fact there is a good reason to look at this
if our interest is strictly 7 (not 9) limit and we are allowing ourselves
the freedom to construct scales along non-MOS lines.


[18, 27, 18, -34, 22, 1] Ennealimmal

bad   200.7612789   comp   39.23009049   rms   .1304491741



[16, 2, 5, 6, 37, -34] Hemiwuerschmidt

bad   534.8468679   comp   24.71841419   rms   .8753631224



[6, -7, -2, 15, 20, -25] Miracle

bad   568.1796030   comp   18.62793601   rms   1.637405196



[4, 2, 2, -1, 8, -6] Decimal

bad   766.2480478   comp   5.656854249   rms   23.94525150



[10, 9, 7, -9, 17, -9] Small diesic

bad   810.1208287   comp   15.62049935   rms   3.320167332



[1, 4, 10, 12, -13, 4] Meantone

bad   890.6035608   comp   15.58845727   rms   3.665035228



[7, -3, 8, 27, 7, -21] Orwell

bad   890.6976986   comp   18.54723699   rms   2.589237496



[4, 4, 4, -2, 5, -3] Diminished

bad   918.5756443   comp   6.928203230   rms   19.13699259



[2, 25, 13, -40, -15, 35] Hemififth

bad   931.5691063   comp   39.89987469   rms   .5851564738



[6, 5, 3, -7, 12, -6] Kleismic

bad   1031.000003   comp   9.165151390   rms   12.27380956



[9, 5, -3, -21, 30, -13] Quartaminorthirds

bad   1039.361025   comp   18.41195264   rms   3.065961726



[2, -4, -4, 2, 12, -11] Pajara

bad   1177.543176   comp   10.39230485   rms   10.90317755



[0, 5, 0, -14, 0, 8] Quintal

bad   1186.151431   comp   8.660254038   rms   15.81535241



[4, -3, 2, 13, 8, -14] Tertiathirds

bad   1304.177048   comp   10.34408043   rms   12.18857055



[8, 18, 11, -25, 5, 10] Octafifths

bad   1376.914655   comp   25.82634314   rms   2.064339812



[3, 0, -6, -14, 18, -7] Tripletone

bad   1385.216081   comp   13.07669683   rms   8.100678834



[8, 6, 6, -3, 13, -9] Double wide

bad   1459.046339   comp   12.00000000   rms   10.13226624



[5, 1, 12, 25, -5, -10] Magic

bad   1473.502081   comp   18.86796226   rms   4.139050792



[3, 12, -1, -36, 10, 12] Supermajor seconds

bad   1503.290103   comp   20.49390153   rms   3.579262150



[1, 4, -2, -16, 6, 4] Dominant seventh

bad   1512.246113   comp   8.660254038   rms   20.16328150



[5, 13, -17, -76, 41, 9] Amt

bad   1633.393513   comp   43.94314509   rms   .8458796028



[3, 0, 6, 14, -1, -7] Augmented

bad   1643.269165   comp   9.949874371   rms   16.59867843



[15, -2, -5, -6, 50, -38] Hemithird

bad   1648.130712   comp   30.85449724   rms   1.731229740



[1, -8, -14, -10, 25, -15] Schismic

bad   1724.179823   comp   24.55605832   rms   2.859336356



[6, 5, 22, 37, -18, -6] Catakleismic

bad   1757.115994   comp   33.03028913   rms   1.610555448



[2, -9, -4, 16, 12, -19] Neutral thirds

bad   1767.424388   comp   16.82260384   rms   6.245315858



[7, 9, 13, 5, -1, -2] Semisixths (tiny diesic)

bad   1793.790515   comp   18.84144368   rms   5.052931030



[1, 9, -2, -30, 6, 12] Superpythagorean

bad   1794.928339   comp   16.73320053   rms   6.410458352



[3, 5, -6, -28, 18, 1] Porcupine

bad   1879.273475   comp   16.61324773   rms   6.808961862



[13, -10, 6, 42, 27, -46]

bad   1911.832046   comp   33.74907406   rms   1.678518039



[2, 8, 1, -20, 4, 8]

bad   1966.962149   comp   12.44989960   rms   12.69007837



[2, 6, 6, -3, -4, 5] Supersharp

bad   2037.299988   comp   10.39230485   rms   18.86388876



[9, 10, -3, -35, 30, -5]

bad   2042.562846   comp   22.44994432   rms   4.052704060



[12, 10, -9, -49, 48, -12] Hemikleismic

bad   2144.955624   comp   33.63034344   rms   1.896512488



[5, -11, -12, 3, 33, -29]

bad   2255.013430   comp   28.91366459   rms   2.697384486



[4, -8, 14, 55, -11, -22] Shrutar

bad   2259.485358   comp   31.68595904   rms   2.250483424



[12, -2, 20, 52, 2, -31] 

bad   2265.152215   comp   35.94440151   rms   1.753213789



[3, 17, -1, -50, 10, 20]

bad   2278.812132   comp   28.89636655   rms   2.729116326



[2, 8, 8, -4, -7, 8] Injera

bad   2288.664030   comp   14.28285686   rms   11.21894132



[0, 12, 24, 22, -38, 19]

bad   2371.077791   comp   39.79949748   rms   1.496892545



[1, -3, 5, 20, -5, -7] Hexadecimal

bad   2434.569514   comp   11.44552314   rms   18.58450012



[5, 1, -7, -19, 25, -10]

bad   2609.423437   comp   17.29161647   rms   8.727168682



[2, 8, -11, -48, 23, 8]

bad   2817.934201   comp   27.47726333   rms   3.732363180



[1, 4, -9, -32, 17, 4] Flattone

bad   2877.300282   comp   19.39071943   rms   7.652394368



[2, -4, -16, -26, 31, -11] Diaschismic

bad   2980.871818   comp   27.92848009   rms   3.821630536


top of page bottom of page up down


Message: 5102 - Contents - Hide Contents

Date: Mon, 15 Jul 2002 06:32:24

Subject: Re: Temperaments sorted by "geometric badness"

From: genewardsmith

--- In tuning-math@y..., Gene W Smith <genewardsmith@j...> wrote:

> [2, 25, 13, -40, -15, 35] > comp 46.45156501 rms .5851564738 bad 1262.620148
Because of its high rank (#4) on my list of 45, it might be time to give this more-or-less-microtemperament a little respect, and an actual name. Below I give a Fokker block for the commas <64/63, 5120/5103, 2401/2400>, and a tempering by the 239-et. [1, 28/27, 21/20, 49/45, 9/8, 7/6, 189/160, 49/40, 80/63, 1029/800, 4/3, 441/320, 10/7, 196/135, 3/2, 14/9, 63/40, 49/30, 27/16, 343/200, 16/9, 147/80, 40/21, 3087/1600] 12 7-limit intervals, no triads, not connected :( [0, 12, 17, 29, 41, 53, 58, 70, 82, 87, 99, 111, 123, 128, 140, 152, 157, 169, 181, 186, 198, 210, 222, 227] 59 intervals, 24 triads. It may not win a prize, but it does show the importance of tempering in some cases. Since 239 wants to be an 11-limit system, I also checked the 11-limit numbers: 97 intervals, 100 triads. Smokin'!
top of page bottom of page up down


Message: 5103 - Contents - Hide Contents

Date: Wed, 17 Jul 2002 18:20:14

Subject: Geometric comma measures

From: Gene W Smith

If we want to consider temperaments of codimension one, which is to say,
ones using a single comma, we need a way of measuring comma complexity,
and then of putting that together with the rms value of the comma. If we
use a size hueristic in place of the rms value, we then want a reasonable
way of putting together complexity (in particular, geometric complexity)
with size to get a comma goodness measure.

One way to do this is to appeal to Baker's theorem, which implies that if
L(q) is a Euclidean metric on the p-limit group (turning it into a
lattice), then good(q) = -ln(ln(q)/ln(L(q)) is bounded above, so there
are infinite sets of commas with
good(q) > A for a suitable choice of A.

Here is a list of all 7-limit intervals of size less than 50 cents,
within a radius of 10 of the unison, and such that 
good(q) > 2.6:

[36/35, 49/48, 50/49, 64/63, 81/80, 245/243, 126/125, 4000/3969,
1728/1715, 1029/1024, 225/224, 10976/10935, 3136/3125, 5120/5103,
6144/6125, 65625/65536, 32805/32768, 2401/2400, 4375/4374]


top of page bottom of page up down


Message: 5104 - Contents - Hide Contents

Date: Thu, 18 Jul 2002 16:31:57

Subject: Re: geometric complexity

From: Gene W Smith

On Thu, 18 Jul 2002 18:45:41 -0400 "Paul H. Erlich"
<PErlich@xxxxxxxxxxxxx.xxx> writes:

> Anyway, why aren't we closing in on finality for the project? What > exactly > is Euclidean geometric complexity going to mean to a musician that > our > previous measures don't capture well?
I want a measure which applies to all temperaments, not just linear ones.
top of page bottom of page up down


Message: 5105 - Contents - Hide Contents

Date: Thu, 18 Jul 2002 00:39:27

Subject: Small diesic scales

From: Gene W Smith

These are related to the samll diesic (126/125 and 1728/1715) linear
temperament. The first is a Fokker block, from the commas <10/9, 126/125,
1728/1715>; the Scala file I present here may be copied and pasted.

! smalldi11.scl
!
Small diesic 11-note block, <10/9, 126/125, 1728/1715> commas
! 
11
!
36/35
7/6
6/5
216/175
7/5
10/7
175/108
5/3
12/7
35/18
2/1

We have 18 intervals, 8 triads, and no tetrads; more specifically we get

1-6/5-7/5 and 1-7/6-7/5 chords: roots on degrees 0,6,8,9

1-6/5-7/5-5/3 and 1-7/6-7/5-5/3 chords on degrees 0,9

If we temper this by the 120-et (which is does a good job for small
diesic and makes the scale degrees into nice round numbers in terms of
cents) we get the 11-note small diesic MOS, with generator 31/120:

! smalldimos11.scl
!
Small diesic 11-note MOS, 31/120 version
! 
11
!
40.0
270.0
310.0
350.0
580.0
620.0
850.0
890.0
930.0
1160.0
2/1

We now have 34 intervals, 33 triads, and 2 tetrads; the tetrads occur on
degree 7, which might serve as a tonic.

! smalldi19a.scl
!
Small diesic 19-note block, <16/15, 126/125, 1728/1715> commas
! 
19
!
36/35
25/24
8/7
7/6
6/5
175/144
5/4
48/35
7/5
10/7
35/24
8/5
288/175
5/3
12/7
7/4
48/25
35/18
2/1

52 intervals, 44 triads, 8 tetrads

! smalldi19b.scl
!
Small diesic 19-note block, <16/15, 126/125, 2401/2400> commas
! 
19
!
50/49
21/20
8/7
7/6
6/5
49/40
5/4
48/35
7/5
10/7
35/24
8/5
80/49
5/3
12/7
7/4
40/21
49/25
2/1

50 intervals, 40 triads, 6 tetrads. There are four more tetrads if we are
willing to count those off by 2401/2400, which is less than a cent.

Either of these, when tempered by the 12-et. gives us the 19-note small
diesic MOS:

! smalldimos19.scl
!
Small diesic 19-note MOS, 31/120 version
! 
19
!
40.0
80.0
230.0
270.0
310.0
350.0
390.0
540.0
580.0
620.0
660.0
810.0
850.0
890.0
930.0
970.0
1120.0
1160.0
2/1

82 intervals, 105 triads and 18 tetrads

Here is variant 19-note scale containing glumma:

! smalldi19c.scl
!
Small diesic 19-note scale containing glumma
! 
19
49/48
21/20
15/14
35/32
6/5
49/40
5/4
9/7
21/16
10/7
35/24
3/2
49/32
5/3
12/7
7/4
9/5
35/18
2/1

53 intervals, 45 triads, 8 tetrads

Tempering this gives the following:

! smalldiglum19.scl
!
Small diesic "glumma" variant of 19-note MOS, 31/120 version
! 
19
!
40.0
80.0
120.0
160.0
310.0
350.0
390.0
430.0
470.0
620.0
660.0
700.0
740.0
890.0
930.0
970.0
1010.0
1160.0
2/1

78 intervals, 94 triads, 16 tetrads


top of page bottom of page up down


Message: 5106 - Contents - Hide Contents

Date: Thu, 18 Jul 2002 02:25:05

Subject: Re: Compton/Erlich temperament

From: Gene W Smith

On Thu, 18 Jul 2002 01:22:19 -0700 Carl Lumma <carl@xxxxx.xxx> writes:

> How do we classify the Compton/Erlich scheme of tuning multiple > 12-et keyboards 15 cents apart? Some sort of planar temperament > with the following commas? > > 531441/524288 (pythagorean comma) > 5120/5103 (difference between syntonic comma and 64/63) > > Is this right?
I think it's another system, discussed below. The wedgie you find from the pyth comma and 5120/5103 gives what we are calling a linear temperament. It is [0,12,12,-6,-19,19], and has a TM reduced basis <50/49, 3645/3584>. The mapping is [[12, 19, 28, 34], [0, 0, -1, -1]] However, the rms optimum is 23.4 cents apart, not 15. I think what you want is the linear temperament with wedgie [0,12,12,-6,-19,19], TM reduced basis <225/224, 250047/250000> and mapping [[12,19,28,34],[0,0,-1,-1]]. You can use the 72 or 84 ets for this. By the way, is 250047/250000 not deserving of a little recognition?
top of page bottom of page up down


Message: 5107 - Contents - Hide Contents

Date: Thu, 18 Jul 2002 21:46:40

Subject: Re: geometric complexity

From: Gene W Smith

On Fri, 19 Jul 2002 00:36:20 -0400 "Paul H. Erlich"
<PErlich@xxxxxxxxxxxxx.xxx> writes:
> > First of all, i don't know where you're getting just linear ones > from.
What's your definition of complexity in general?
> Secondly, i don't see what there is about a Euclidean, as opposed to > a > triangular-taxicab, metric that is going to be reflective of how we > hear. In > fact, it would seem especially important at the 9-limit and above to > deviate > from Euclid.
I was proposing using a Euclidean metric which did not give the same size to all prime numbers; prime p would have length ln(p), and if p and q are odd primes, with q>p, then length p/q = length q/p = ln(q). This uniquely determines a Euclidean metric.
top of page bottom of page up down


Message: 5109 - Contents - Hide Contents

Date: Thu, 18 Jul 2002 03:18:02

Subject: 38 linear 7-limit temperaments compatible with 12-et

From: Gene W Smith

Here is raw material for exotic 12-tone tunings and multiple keyboard
experiments, not to mention a lot of old friends.

I think I've seen this one before:
[1, 4, 10, 12, -13, 4]   [[1, 0, -4, -13], [0, 1, 4, 10]]

comp   5.322447240   rms   3.665035228   bad   103.8247475

Here's a microtemperament for multi-keyboard enthusiasts:
[3, -24, -54, -58, 94, -45]   [[3, 0, 45, 94], [0, 1, -8, -18]]

comp   31.51783075   rms   .1469057415   bad   145.9322934


[2, -4, -4, 2, 12, -11]   [[2, 0, 11, 12], [0, 1, -2, -2]]

comp   3.938677761   rms   10.90317755   bad   169.1429833


[3, 0, -6, -14, 18, -7]   [[3, 0, 7, 18], [0, 1, 0, -2]]

comp   4.631825456   rms   8.100678834   bad   173.7904007


[4, 4, 4, -2, 5, -3]   [[4, 0, 3, 5], [0, 1, 1, 1]]

comp   3.144366918   rms   19.13699259   bad   189.2082747


[1, 4, -2, -16, 6, 4]   [[1, 0, -4, 6], [0, 1, 4, -2]]

comp   3.128478105   rms   20.16328150   bad   197.3456024

It worked for Helmholtz
[1, -8, -14, -10, 25, -15]   [[1, 0, 15, 25], [0, 1, -8, -14]]

comp   8.612526914   rms   2.859336356   bad   212.0930465


[3, 0, 6, 14, -1, -7]   [[3, 0, 7, -1], [0, 1, 0, 2]]

comp   3.675273386   rms   16.59867843   bad   224.2088808

This has possibilities
[0, 12, 24, 22, -38, 19]   [[12, 19, 0, -22], [0, 0, 1, 2]]

comp   13.76571634   rms   1.496892545   bad   283.6535726

Another interesting one
[3, -12, -30, -36, 56, -26]   [[3, 0, 26, 56], [0, 1, -4, -10]]

comp   17.83027719   rms   .8942129314   bad   284.2870884


[2, 8, 8, -4, -7, 8]   [[2, 0, -8, -7], [0, 1, 4, 4]]

comp   5.343650829   rms   11.21894132   bad   320.3524287


[2, -4, -16, -26, 31, -11]   [[2, 0, 11, 31], [0, 1, -2, -8]]

comp   9.469818377   rms   3.821630536   bad   342.7141199


[4, -8, -20, -24, 43, -22]   [[4, 0, 22, 43], [0, 1, -2, -5]]

comp   12.75555760   rms   2.220377240   bad   361.2648129


[5, -4, -10, -12, 30, -18]   [[1, 2, 2, 2], [0, 5, -4, -10]]

comp   8.009157500   rms   6.041345016   bad   387.5317655


[6, 0, 0, 0, 17, -14]   [[6, 0, 14, 17], [0, 1, 0, 0]]

comp   4.716550378   rms   18.04292374   bad   401.3801294


[0, 0, 12, 28, -19, 0]   [[12, 19, 28, 0], [0, 0, 0, 1]]

comp   6.904855942   rms   9.840803062   bad   469.1803177


[4, -20, -44, -46, 81, -41]   [[4, 0, 41, 81], [0, 1, -5, -11]]

comp   26.35358322   rms   .6908190406   bad   479.7816635


[2, -16, -40, -48, 69, -30]   [[2, 0, 30, 69], [0, 1, -8, -20]]

comp   23.01717204   rms   .9641797248   bad   510.8129776


[5, 8, 2, -18, 11, 1]   [[1, 2, 3, 3], [0, 5, 8, 2]]

comp   5.083424305   rms   21.64417648   bad   559.3115508


[1, -8, -2, 18, 6, -15]   [[1, 0, 15, 6], [0, 1, -8, -2]]

comp   5.398824730   rms   19.66911204   bad   573.3016760


[3, 12, 18, 8, -20, 12]   [[3, 0, -12, -20], [0, 1, 4, 6]]

comp   10.19699576   rms   5.782918708   bad   601.3004996


[7, 4, 10, 12, 4, -10]   [[1, 1, 2, 2], [0, 7, 4, 10]]

comp   6.082925309   rms   16.44388527   bad   608.4563190


[2, -4, 8, 30, -7, -11]   [[2, 0, 11, -7], [0, 1, -2, 4]]

comp   6.058298120   rms   18.06996660   bad   663.2215524


[1, -8, -26, -38, 44, -15]   [[1, 0, 15, 44], [0, 1, -8, -26]]

comp   14.64779855   rms   3.106171476   bad   666.4539470


[0, 12, 12, -6, -19, 19]   [[12, 19, 0, 6], [0, 0, 1, 1]]

comp   8.845819922   rms   10.15948550   bad   794.9648068


[5, -16, -34, -34, 68, -37]   [[1, 2, 1, 0], [0, 5, -16, -34]]

comp   21.26748532   rms   1.787147240   bad   808.3372977


[6, 12, 12, -6, -2, 5]   [[6, 0, -5, -2], [0, 1, 2, 2]]

comp   7.833907871   rms   13.63960404   bad   837.0640348


[9, 0, -6, -14, 35, -21]   [[3, 1, 7, 11], [0, 3, 0, -2]]

comp   8.596026672   rms   11.94435731   bad   882.5885631


[8, -4, -4, 2, 29, -25]   [[4, 1, 12, 14], [0, 2, -1, -1]]

comp   8.101297218   rms   14.29026872   bad   937.8848637


[6, -12, -24, -22, 55, -33]   [[6, 0, 33, 55], [0, 1, -2, -4]]

comp   16.33270964   rms   3.600727660   bad   960.5207638


[7, -8, -14, -10, 42, -29]   [[1, 1, 3, 4], [0, 7, -8, -14]]

comp   11.74162535   rms   7.012328960   bad   966.7601028


[3, 0, -18, -42, 37, -7]   [[3, 0, 7, 37], [0, 1, 0, -6]]

comp   11.16933529   rms   8.439018022   bad   1052.801683


[9, 0, 6, 14, 16, -21]   [[3, 1, 7, 6], [0, 3, 0, 2]]

comp   7.074825566   rms   21.62618964   bad   1082.459061


[6, -12, -36, -50, 74, -33]   [[6, 0, 33, 74], [0, 1, -2, -6]]

comp   22.11900171   rms   2.367078438   bad   1158.093686


[9, 12, 6, -20, 16, -2]   [[3, 1, 2, 6], [0, 3, 4, 2]]

comp   7.852968657   rms   21.26148578   bad   1311.177048


[10, 4, 16, 26, 3, -17]   [[2, 4, 5, 7], [0, 5, 2, 8]]

comp   9.546317939   rms   16.25734866   bad   1481.567725


[1, -8, 10, 46, -13, -15]   [[1, 0, 15, -13], [0, 1, -8, 10]]

comp   8.914766865   rms   18.78088561   bad   1492.574604


[2, -16, -16, 8, 31, -30]   [[2, 0, 30, 31], [0, 1, -8, -8]]

comp   12.60828383   rms   10.10704662   bad   1606.705286


top of page bottom of page up down


Message: 5110 - Contents - Hide Contents

Date: Fri, 19 Jul 2002 00:59:04

Subject: Re: 38 linear 7-limit temperaments compatible with 12-et

From: genewardsmith

--- In tuning-math@y..., Gene W Smith <genewardsmith@j...> wrote:

> Here's a microtemperament for multi-keyboard enthusiasts: > [3, -24, -54, -58, 94, -45] [[3, 0, 45, 94], [0, 1, -8, -18]] > > comp 31.51783075 rms .1469057415 bad 145.9322934
Let's see how this one might work. We can change the mapping given above to the equivalent [12 3] [19 5] [28 5] [34 4] The generators for this are well approximated by 14/171 and 1/171, and we can use this as a keyboard system for the 171-et, with the 12-note keyboards tuned to semitones of size 14/171 ocatves, and the keyboards separated by 1/171. This non-ocatave tuning (12*(14/171) = 168/171, a comma less than the octave) can be modified to one which tunes each rank of 12-note keyboards slightly unevenly, to the 14/171 MOS, namely [14 14 14 15] repeated three times. Of course this gives four different patterns for chords, but you pays your money and you makes your choice.
top of page bottom of page up down


Message: 5111 - Contents - Hide Contents

Date: Sat, 20 Jul 2002 04:58:01

Subject: Hemiwuerschmidt, the Porcupine Complex, and transformations

From: Gene W Smith

These turn out to have some interesting properties.

Hemiwuerschmidt is the 7-limit linear temperament with wedgie [16, 2, 5,
6, 37, -34] and commas 2401/2400,
3136/3125, 6144/6125 and of course the wuerschmidt, 393216/390625.

13-note Fokker blocks

[1, 50/49, 28/25, 8/7, 5/4, 32/25, 7/5, 10/7, 25/16, 8/5, 7/4, 25/14,
49/25]
commas  [15/14, 3136/3125, 2401/2400]
intervals 24 triads 12 tetrads 0


[1, 128/125, 28/25, 8/7, 5/4, 32/25, 7/5, 10/7, 25/16, 8/5, 7/4, 25/14,
125/64]
commas [15/14, 3136/3125, 6144/6125]
intervals 22 triads 10 tetrads 0

Both of these involve only the primes 2,5 and 7; and so may be thought of
as blocks for what I've called the "hemithirds no threes" 7-limit planar
temperament, whose defining comma is the 3-less 3136/3125. I suppose
"hemiwuerschmidt no threes" might be a better name.

[1, 49/48, 28/25, 8/7, 5/4, 32/25, 7/5, 10/7, 25/16, 8/5, 7/4, 25/14,
96/49]
[15/14, 2401/2400, 6144/6125]
intervals 22 triads 10 tetrads 0

If we temper by the 31, 68, 99, 130 or even (as I've done here) by the
[427, 677, 992, 1199] val, we get a 13-note MOS, which here I represent
by the 69/427 MOS of the 427-et:

[0, 13, 69, 82, 138, 151, 207, 220, 276, 289, 345, 358, 414]
intervals 31 triads 16 tetrads 0

This is almost,  but not quite, the same as the "hemithirds no threes" 13
note MOS; it can't *exactly* be regarded as that since it has a couple of
poor but honest subminor thirds, though the actual notes are the same.

[1, 50/49, 35/32, 28/25, 8/7, 49/40, 5/4, 125/98, 343/250, 7/5, 10/7,
500/343, 196/125, 8/5, 80/49, 7/4, 25/14, 64/35,49/25]
commas [21/20, 3136/3125, 2401/2400]
intervals 38 triads 20 tetrads 0

The "0" does not count the four complete tetrads off by less than a cent
(by 2401/2400.)

[1, 128/125, 35/32, 28/25, 8/7, 49/40, 5/4, 32/25, 175/128, 7/5, 10/7,
256/175, 25/16, 8/5, 80/49, 7/4, 25/14, 
64/35, 125/64]
comma [21/20, 3136/3125, 6144/6125]
intervals 38 triads 20 tetrads 0

Here the chord count (counting *only* theoretically exact chords) is the
same, and in fact the two characteristic polynomials are the same,
suggesting there is an isomorphism between the two graphs of the two
scales. This turns out to be the case: both scales are in the {2,3,7}
subgroup, and the mapping 5-->7, 7-->56/5 sends the first scale to the
second, and the inverse map 5->40/7, 7->5 sends it back again. This
transformation is of order 6, and induces a permutation of degree six on
the MOS. This MOS mapping is an automorphism of the "no threes" graph,
but not of the full hemiwuerschmidt graph.

[1, 49/48, 35/32, 28/25, 8/7, 49/40, 5/4, 245/192, 48/35, 7/5, 10/7,
35/24, 384/245, 8/5, 80/49, 7/4, 25/14, 64/35, 96/49]
commas [21/20, 2401/2400, 6144/6125];
intervals 42 triads 26 tetrads 2

The tetrad count grows to four if we allow 2401/2400 relationships.

All of these scales have the same hemiwuerschmidt 19-tone MOS:

[0, 13, 56, 69, 82, 125, 138, 151, 194, 207, 220, 233, 276, 289, 
302, 345, 358, 371, 414]
intervals 63 triads 50 tetrads 6

The 13 and 19 tone hemiwuerschmidt MOS can both be considered  as "no
threes" MOS, and in this way a part of the Porcupine Complex of
transformations between the 250/243, 3125/3087 and 3136/3125 planar
temperaments I wrote about a while back; unfortunately Yahoo won't let me
use the archives just now, so I don't have the message number.


top of page bottom of page up down


Message: 5112 - Contents - Hide Contents

Date: Sat, 20 Jul 2002 20:54:17

Subject: Re: geometric complexity

From: Gene W Smith

On Fri, 19 Jul 2002 00:55:22 -0400 "Paul H. Erlich"
<PErlich@xxxxxxxxxxxxx.xxx> writes:

Just redo the 5-limit and see how everyone feels about the
> rankings, and off we go . . . (but i'll keep harping on the question > of a > more elegant metric)
Which 5-limit temperaments do you regard as essential? How would you rate 128/125, 135/128, 250/243, 78732/78125, 393216/390625, 3125/3072 or 648/625? How about the funky systems such as 25/24, 27/25, 16/15, 10/9, 9/8? Where do you draw that line?
top of page bottom of page up down


Message: 5113 - Contents - Hide Contents

Date: Sat, 20 Jul 2002 19:04:01

Subject: Re: geometric complexity

From: Gene W Smith

>What's your definition of complexity in general? >Just about the same as yours, but . . . What specifically?
>> Secondly, i don't see what there is about a Euclidean, as opposed to >> a >> triangular-taxicab, metric that is going to be reflective of how we >> hear. In >> fact, it would seem especially important at the 9-limit and above to >> deviate > from Euclid.
>> I was proposing using a Euclidean metric which did not give the same size >> to all prime numbers; prime p would have length ln(p), and if p and q are >> odd primes, with q>p, then >> length p/q = length q/p = ln(q). This uniquely determines a Euclidean >> metric.
>Right, but first of all, do we or don't we have octave equivalence?
We do; this is a metric on octave classes.
>Secondly, the metric (if you replace "prime" with "odd") is inconsistent for >intervals like 9/5, right? You can't form a Euclidean figure for the 9-limit >pentad such that all the intervals obey this "odd" rule, can you?
It doesn't treat 9 quite like a prime, but I don't think it does badly. In this case we have L(7/5) = ln 7 = 1.946 L(9/5) = sqrt(2 ln(3)^2 + ln(5)^2) = 2.237 L(11/5) = ln(11) = 2.398 The value 2.237 instead of ln(9) = 2.197 doesn't seem that horrible to me.
top of page bottom of page up down


Message: 5114 - Contents - Hide Contents

Date: Sun, 21 Jul 2002 21:37:27

Subject: A 5-limit, "geometric" temperament list

From: Gene W Smith

The following is a complete list of all 5-limit temperaments satisfying
the requirements that rms error be less than 15, geometric complexity
less than 40, and the badness calculated from these less than 3000. If
people feel something valuable has been left off (e.g, 135/128, 25/24, or
16875/16384) we could raise the error limit.


81/80   (3)^4/(2)^4/(5) meantone
[[1, 0, -4], [0, 1, 4]]

comp   4.132030727   rms   4.217730828   bad   297.5565312
generators   [1200., 1896.164845]


128/125   (2)^7/(5)^3 augmented
[[3, 5, 7], [0, 1, 0]]

comp   4.828313736   rms   9.677665780   bad   1089.323984
generators   [400.0000000, 91.20185550]


256/243   (2)^8/(3)^5 quintal
[[5, 8, 12], [0, 0, -1]]

comp   5.493061445   rms   12.75974144   bad   2114.877638
generators   [240.0000000, 84.66378778]


250/243   (2)*(5)^3/(3)^5 porcupine
[[1, 2, 3], [0, -3, -5]]

comp   5.948285733   rms   7.975800816   bad   1678.609846
generators   [1200., 162.9960265]


2048/2025   (2)^11/(3)^4/(5)^2 diaschismic
[[2, 3, 5], [0, 1, -2]]

comp   6.271198982   rms   2.612821643   bad   644.4088670
generators   [600.0000000, 105.4465315]


648/625   (2)^3*(3)^4/(5)^4 diminished
[[4, 6, 9], [0, 1, 1]]

comp   6.437751648   rms   11.06006024   bad   2950.938432
generators   [300.0000000, 94.13435693]


3125/3072   (5)^5/(2)^10/(3) diesic (small diesic)
[[1, 0, 2], [0, 5, 1]]

comp   7.741412273   rms   4.569472316   bad   2119.954991
generators   [1200., 379.9679493]


15625/15552   (5)^6/(2)^6/(3)^5 kleismic
[[1, 0, 1], [0, 6, 5]]

comp   9.338935129   rms   1.029625097   bad   838.6315482
generators   [1200., 317.0796753]


32805/32768   (3)^8*(5)/(2)^15 shismic
[[1, 0, 15], [0, 1, -8]]

comp   9.459947973   rms   .1616933186   bad   136.8857747
generators   [1200., 1901.727514]


20000/19683   (2)^5*(5)^4/(3)^9 quadrafifths (minimal diesic)
[[1, 1, 1], [0, 4, 9]]

comp   9.785568434   rms   2.504205191   bad   2346.540676
generators   [1200., 176.2822703]


78732/78125   (2)^2*(3)^9/(5)^7 hemisixths (tiny diesic)
[[1, -1, -1], [0, 7, 9]]

comp   12.19218236   rms   1.157498409   bad   2097.803242
generators   [1200., 442.9792975]


393216/390625   (2)^17*(3)/(5)^8 wuerschmidt
[[1, -1, 2], [0, 8, 1]]

comp   12.54312332   rms   1.071949828   bad   2115.395301
generators   [1200., 387.8196733]


2109375/2097152   (3)^3*(5)^7/(2)^21 orwell
[[1, 0, 3], [0, 7, -3]]

comp   12.77234114   rms   .8004099292   bad   1667.723301
generators   [1200., 271.5895996]


1600000/1594323   (2)^9*(5)^5/(3)^13 amt
[[1, 3, 6], [0, -5, -13]]

comp   13.79419993   rms   .3831037874   bad   1005.555381
generators   [1200., 339.5088256]


6115295232/6103515625   (2)^23*(3)^6/(5)^14 semisuper
[[2, 4, 5], [0, -7, -3]]

comp   21.20762522   rms   .1940180530   bad   1850.624306
generators   [600.0000000, 71.14606343]


1224440064/1220703125   (2)^8*(3)^14/(5)^13 parakleismic
[[1, 5, 6], [0, -13, -14]]

comp   21.32267248   rms   .2766026501   bad   2681.521263
generators   [1200., 315.2509133]


10485760000/10460353203   (2)^24*(5)^4/(3)^21
[[1, 0, -6], [0, 4, 21]]

comp   21.73304916   rms   .1537673823   bad   1578.433204
generators   [1200., 475.5422333]


274877906944/274658203125   (2)^38/(3)^2/(5)^15 hemithird
[[1, 4, 2], [0, -15, 2]]

comp   24.97702150   rms   .6082244804e-1   bad   947.7326423
generators   [1200., 193.1996149]


68719476736000/68630377364883   (2)^39*(5)^3/(3)^29 trichotififths
[[1, 0, -13], [0, 3, 29]]

comp   30.55081228   rms   .5750010064e-1   bad   1639.596150
generators   [1200., 634.0119851]


19073486328125/19042491875328   (5)^19/(2)^14/(3)^19 enneadecal
[[19, 30, 44], [0, 1, 1]]

comp   30.57932033   rms   .1047837215   bad   2996.244873
generators   [63.15789474, 7.292252126]


9010162353515625/9007199254740992   (3)^10*(5)^16/(2)^53
[[2, 1, 6], [0, 8, -5]]

comp   31.25573660   rms   .1772520822e-1   bad   541.2283791
generators   [600.0000000, 162.7418923]


7629394531250/7625597484987   (2)*(5)^18/(3)^27 ennealimmal
[[9, 13, 19], [0, 2, 3]]

comp   33.65327154   rms   .2559250891e-1   bad   975.4269093
generators   [133.3333333, 84.32451333]


50031545098999707/50000000000000000   (3)^35/(2)^16/(5)^17
[[1, -1, -3], [0, 17, 35]]

comp   38.84548584   rms   .2546649929e-1   bad   1492.763207
generators   [1200., 182.4660891]


450359962737049600/450283905890997363   (2)^54*(5)^2/(3)^37 monzismic
[[1, 2, 10], [0, -2, -37]]

comp   39.66560308   rms   .5738429624e-2   bad   358.1254995
generators   [1200., 249.0184479]


top of page bottom of page up down


Message: 5115 - Contents - Hide Contents

Date: Sun, 21 Jul 2002 21:51:37

Subject: Re: A 5-limit, "geometric" temperament list

From: Gene W Smith

On Sun, 21 Jul 2002 21:37:27 -0700 Gene W Smith <genewardsmith@xxxx.xxx>
writes:

> 68719476736000/68630377364883 (2)^39*(5)^3/(3)^29 trichotififths > [[1, 0, -13], [0, 3, 29]] > > comp 30.55081228 rms .5750010064e-1 bad 1639.596150 > generators [1200., 634.0119851]
Should be "trichototwelfths"
top of page bottom of page up down


Message: 5116 - Contents - Hide Contents

Date: Mon, 22 Jul 2002 22:02:15

Subject: A 7-limit planar temperaments list

From: Gene W Smith

Here is a list of 7-limit planar temperaments, with complexity and rms
error less than 14, and badness calculated from that (as rms *
complexity^4, which are the right dimensions to correspond to linear
temperaments) less than 10000. I don't see much of interest in the ones
with badness over 5000, but they are listed in terms of increasing
badness and you can make your own judgments. Using Minkowski's basic
theorem from his geometry of numbers would help us these to be used to
get 7-limit temperaments.


4375/4374   (5)^4*(7)/(2)/(3)^7
[[1, 0, 0, 1], [0, 1, 0, 7], [0, 0, 1, -4]]

comp   8.514085954   rms   .3862236561e-1   bad   202.9509048
generators   [1200., 1902.005884, 2786.302406]



250047/250000   (3)^6*(7)^3/(2)^4/(5)^6
[[3, 0, 0, 4], [0, 1, 0, -2], [0, 0, 1, 2]]

comp   10.12074134   rms   .2800947367e-1   bad   293.8693214
generators   [400.0000000, 1901.922456, 2786.324561]



2401/2400   (7)^4/(2)^5/(3)/(5)^2
[[1, 1, 1, 2], [0, 2, 1, 1], [0, 0, 2, 1]]

comp   7.001210638   rms   .1255441309   bad   301.6400406
generators   [1200., 350.9775007, 617.6844971]



225/224   (3)^2*(5)^2/(2)^5/(7)
[[1, 0, 0, -5], [0, 1, 0, 2], [0, 0, 1, 2]]

comp   4.026020476   rms   1.484083173   bad   389.9080111
generators   [1200., 1899.812912, 2784.171625]



64/63   (2)^6/(3)^2/(7)
[[1, 0, 0, 6], [0, 1, 0, -2], [0, 0, 1, 0]]

comp   3.320882425   rms   5.949512815   bad   723.5947437
generators   [1200., 1911.692178, 2792.156018]



81/80   (3)^4/(2)^4/(5)
[[1, 0, -4, 0], [0, 1, 4, 0], [0, 0, 0, 1]]

comp   4.132030727   rms   3.443762373   bad   1003.892815
generators   [1200., 1896.164845, 3366.344411]



32805/32768   (3)^8*(5)/(2)^15
[[1, 0, 15, 0], [0, 1, -8, 0], [0, 0, 0, 1]]

comp   9.459947973   rms   .1320192291   bad   1057.285276
generators   [1200., 1901.727514, 3368.705472]



126/125   (2)*(3)^2*(7)/(5)^3
[[1, 0, 0, -1], [0, 1, 0, -2], [0, 0, 1, 3]]

comp   4.396397238   rms   3.010264897   bad   1124.585345
generators   [1200., 1899.984322, 2789.269735]



5120/5103   (2)^10*(5)/(3)^6/(7)
[[1, 0, 0, 10], [0, 1, 0, -6], [0, 0, 1, 1]]

comp   6.872898147   rms   .5465065421   bad   1219.424726
generators   [1200., 1902.888700, 2786.702752]



2460375/2458624   (3)^9*(5)^3/(2)^10/(7)^4
[[1, 0, 2, -1], [0, 1, 1, 3], [0, 0, 4, 3]]

comp   11.82008947   rms   .7718361083e-1   bad   1506.635331
generators   [1200., 1901.831749, -378.8994468]



28/27   (2)^2*(7)/(3)^3
[[1, 0, 0, -2], [0, 1, 0, 3], [0, 0, 1, 0]]

comp   3.320882425   rms   13.73919562   bad   1670.995600
generators   [1200., 1924.441038, 2795.308127]



65625/65536   (3)*(5)^5*(7)/(2)^16
[[1, 0, 0, 16], [0, 1, 0, -1], [0, 0, 1, -5]]

comp   9.483876888   rms   .2200495161   bad   1780.180537
generators   [1200., 1901.707688, 2785.942745]



420175/419904   (5)^2*(7)^5/(2)^6/(3)^8
[[1, 0, 3, 0], [0, 1, 4, 0], [0, 0, 5, -2]]

comp   11.85680458   rms   .9406410627e-1   bad   1859.065030
generators   [1200., 1902.061943, -1684.389187]



6144/6125   (2)^11*(3)/(5)^3/(7)^2
[[1, 0, 1, 4], [0, 1, 1, -1], [0, 0, 2, -3]]

comp   7.012333797   rms   .7993271605   bad   1932.746493
generators   [1200., 1902.491206, -157.4631745]



703125/702464   (3)^2*(5)^7/(2)^11/(7)^3
[[1, 0, 2, 1], [0, 1, 1, 3], [0, 0, 3, 7]]

comp   11.00411811   rms   .1342982709   bad   1969.207103
generators   [1200., 1901.822082, -505.2414545]



1029/1024   (3)*(7)^3/(2)^10
[[1, 1, 0, 3], [0, 3, 0, -1], [0, 0, 1, 0]]

comp   6.237538987   rms   1.350315689   bad   2044.035369
generators   [1200., 233.4444416, 2785.016372]



49/48   (7)^2/(2)^4/(3)
[[1, 0, 0, 2], [0, 2, 0, 1], [0, 0, 1, 0]]

comp   3.733539376   rms   11.89893695   bad   2312.017448
generators   [1200., 950.9775006, 2780.364245]



50/49   (2)*(5)^2/(7)^2
[[2, 0, 0, 1], [0, 1, 0, 0], [0, 0, 1, 1]]

comp   3.891820298   rms   10.09659043   bad   2316.252253
generators   [600.0000000, 1901.955001, 2777.569810]



3136/3125   (2)^6*(7)^2/(5)^5
[[1, 0, 0, -3], [0, 1, 0, 0], [0, 0, 2, 5]]

comp   7.348511491   rms   .8057454012   bad   2349.607642
generators   [1200., 1902.435257, 1393.797198]



245/243   (5)*(7)^2/(3)^5
[[1, 0, 0, 0], [0, 1, 1, 2], [0, 0, 2, -1]]

comp   5.914949368   rms   1.987070580   bad   2432.301564
generators   [1200., 1904.876579, 440.9272508]



4000/3969   (2)^5*(5)^3/(3)^4/(7)^2
[[1, 0, 1, 4], [0, 1, 0, -2], [0, 0, 2, 3]]

comp   6.115596778   rms   1.784055755   bad   2495.535749
generators   [1200., 1904.436192, 793.1568564]



10976/10935   (2)^5*(7)^3/(3)^7/(5)
[[1, 0, 2, -1], [0, 1, 2, 3], [0, 0, 3, 1]]

comp   8.434555688   rms   .5771951599   bad   2921.268800
generators   [1200., 1902.880572, -1139.661549]



5250987/5242880   (3)^7*(7)^4/(2)^20/(5)
[[1, 0, 0, 5], [0, 1, 3, -1], [0, 0, 4, 1]]

comp   11.71753460   rms   .1695157602   bad   3195.619481
generators   [1200., 1901.681064, -729.7186252]



2048/2025   (2)^11/(3)^4/(5)^2
[[2, 0, 11, 0], [0, 1, -2, 0], [0, 0, 0, 1]]

comp   6.271198982   rms   2.133360336   bad   3299.639851
generators   [600.0000000, 1905.446531, 3370.920823]



875/864   (5)^3*(7)/(2)^5/(3)^3
[[1, 0, 0, 5], [0, 1, 0, 3], [0, 0, 1, -3]]

comp   5.590098759   rms   3.998747915   bad   3904.828359
generators   [1200., 1904.145206, 2781.933305]



1728/1715   (2)^6*(3)^3/(5)/(7)^3
[[1, 0, 0, 2], [0, 1, 0, 1], [0, 0, 3, -1]]

comp   6.389007079   rms   2.386896737   bad   3977.105469
generators   [1200., 1900.647644, 929.2070233]



128/125   (2)^7/(5)^3
[[3, 0, 7, 0], [0, 1, 0, 0], [0, 0, 0, 1]]

comp   4.828313736   rms   7.901781211   bad   4294.443852
generators   [400.0000000, 1908.798145, 3375.669050]



525/512   (3)*(5)^2*(7)/(2)^9
[[1, 0, 0, 9], [0, 1, 0, -1], [0, 0, 1, -2]]

comp   4.914886013   rms   7.556420940   bad   4409.302991
generators   [1200., 1892.089470, 2774.475078]



19683/19600   (3)^9/(2)^4/(5)^2/(7)^2
[[1, 0, 0, -2], [0, 2, 0, 9], [0, 0, 1, -1]]

comp   9.496383083   rms   .5594506202   bad   4549.824682
generators   [1200., 950.5282864, 2786.121192]



321489/320000   (3)^8*(7)^2/(2)^9/(5)^4
[[2, 0, 0, 9], [0, 1, 0, -4], [0, 0, 1, 2]]

comp   9.685150414   rms   .5990398573   bad   5270.856574
generators   [600.0000000, 1901.017355, 2786.179764]



4096000/4084101   (2)^15*(5)^3/(3)^5/(7)^5
[[1, 0, 0, 3], [0, 1, 0, -1], [0, 0, 5, 3]]

comp   11.01660696   rms   .3957132811   bad   5828.704629
generators   [1200., 1902.514624, 557.3000507]



686/675   (2)*(7)^3/(3)^3/(5)^2
[[1, 0, 2, 1], [0, 1, 0, 1], [0, 0, 3, 2]]

comp   6.011672792   rms   4.481232704   bad   5853.004182
generators   [1200., 1907.336788, 130.2063806]



33075/32768   (3)^3*(5)^2*(7)^2/(2)^15
[[1, 1, 0, 6], [0, 2, 0, -3], [0, 0, 1, -1]]

comp   7.823970640   rms   1.622557336   bad   6080.074498
generators   [1200., 349.7544516, 2784.112225]



405/392   (3)^4*(5)/(2)^3/(7)^2
[[1, 0, 1, -1], [0, 1, 0, 2], [0, 0, 2, 1]]

comp   5.199938690   rms   8.419825102   bad   6155.962460
generators   [1200., 1888.775891, 789.3913963]



3645/3584   (3)^6*(5)/(2)^9/(7)
[[1, 0, 0, -9], [0, 1, 0, 6], [0, 0, 1, 1]]

comp   6.872898147   rms   2.773231799   bad   6187.935855
generators   [1200., 1897.216978, 2783.549864]



2100875/2097152   (5)^3*(7)^5/(2)^21
[[1, 0, 2, 3], [0, 1, 0, 0], [0, 0, 5, -3]]

comp   12.52322351   rms   .2532643498   bad   6229.290561
generators   [1200., 1901.704334, 77.19380915]



1323/1280   (3)^3*(7)^2/(2)^8/(5)
[[1, 0, 0, 4], [0, 1, 1, -1], [0, 0, 2, 1]]

comp   5.199938690   rms   8.527334761   bad   6234.565687
generators   [1200., 1888.607610, 445.9928964]



67108864/66976875   (2)^26/(3)^7/(5)^4/(7)^2
[[1, 0, 0, 13], [0, 2, 0, -7], [0, 0, 1, -2]]

comp   13.68011660   rms   .1803880478   bad   6317.815729
generators   [1200., 951.1207079, 2786.557165]



15625/15552   (5)^6/(2)^6/(3)^5
[[1, 0, 1, 0], [0, 6, 5, 0], [0, 0, 0, 1]]

comp   9.338935129   rms   .8406854315   bad   6394.740953
generators   [1200., 317.0796754, 3368.695142]



16875/16807   (3)^3*(5)^4/(7)^5
[[1, 0, 0, 0], [0, 1, 3, 3], [0, 0, 5, 4]]

comp   9.567898928   rms   .7767030640   bad   6509.105851
generators   [1200., 1901.307749, -583.6772476]



102760448/102515625   (2)^21*(7)^2/(3)^8/(5)^6
[[2, 0, 0, -21], [0, 1, 0, 4], [0, 0, 1, 3]]

comp   13.89893287   rms   .2141059337   bad   7990.142647
generators   [600.0000000, 1902.288028, 2786.613436]



250/243   (2)*(5)^3/(3)^5
[[1, 2, 3, 0], [0, 3, 5, 0], [0, 0, 0, 1]]

comp   5.948285733   rms   6.512214090   bad   8152.596693
generators   [1200., -162.9960265, 3371.413598]



458752/455625   (2)^16*(7)/(3)^6/(5)^4
[[1, 0, 0, -16], [0, 1, 0, 6], [0, 0, 1, 4]]

comp   10.00226449   rms   .8352030642   bad   8359.598450
generators   [1200., 1903.280492, 2787.462472]



589824/588245   (2)^16*(3)^2/(5)/(7)^6
[[1, 0, 4, 2], [0, 1, 2, 0], [0, 0, 6, -1]]

comp   11.93226425   rms   .4664233339   bad   9455.221767
generators   [1200., 1902.165950, -969.5993818]



256/243   (2)^8/(3)^5
[[5, 8, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]

comp   5.493061445   rms   10.41828523   bad   9485.365527
generators   [240.0000000, 2795.336213, 3377.848405]


top of page bottom of page up down


Message: 5117 - Contents - Hide Contents

Date: Tue, 23 Jul 2002 02:39:56

Subject: Modified best 5-limit geometric list

From: Gene W Smith

Here is another list, with the cutoffs changed to complexity and rms
error less than 20, and badness less than 3200:

32805/32768   (3)^8*(5)/(2)^15 shismic
[[1, 0, 15], [0, 1, -8]]

comp   9.459947973   rms   .1616933186   bad   136.8857747
generators   [1200., 1901.727514]


81/80   (3)^4/(2)^4/(5) meantone
[[1, 0, -4], [0, 1, 4]]

comp   4.132030727   rms   4.217730828   bad   297.5565312
generators   [1200., 1896.164845]


2048/2025   (2)^11/(3)^4/(5)^2 diaschismic
[[2, 3, 5], [0, 1, -2]]

comp   6.271198982   rms   2.612821643   bad   644.4088670
generators   [600.0000000, 105.4465315]


15625/15552   (5)^6/(2)^6/(3)^5 kleismic
[[1, 0, 1], [0, 6, 5]]

comp   9.338935129   rms   1.029625097   bad   838.6315482
generators   [1200., 317.0796753]


1600000/1594323   (2)^9*(5)^5/(3)^13 amt
[[1, 3, 6], [0, -5, -13]]

comp   13.79419993   rms   .3831037874   bad   1005.555381
generators   [1200., 339.5088256]


128/125   (2)^7/(5)^3 augmented
[[3, 5, 7], [0, 1, 0]]

comp   4.828313736   rms   9.677665780   bad   1089.323984
generators   [400.0000000, 91.20185550]


135/128   (3)^3*(5)/(2)^7 pelogic
[[1, 0, 7], [0, 1, -3]]

comp   4.132030727   rms   18.07773392   bad   1275.365360
generators   [1200., 1877.137655]


2109375/2097152   (3)^3*(5)^7/(2)^21 orwell
[[1, 0, 3], [0, 7, -3]]

comp   12.77234114   rms   .8004099292   bad   1667.723301
generators   [1200., 271.5895996]


250/243   (2)*(5)^3/(3)^5 porcupine
[[1, 2, 3], [0, -3, -5]]

comp   5.948285733   rms   7.975800816   bad   1678.609846
generators   [1200., 162.9960265]


78732/78125   (2)^2*(3)^9/(5)^7 hemisixths
[[1, -1, -1], [0, 7, 9]]

comp   12.19218236   rms   1.157498409   bad   2097.803242
generators   [1200., 442.9792975]


256/243   (2)^8/(3)^5 quintal (blackwood?)
[[5, 8, 12], [0, 0, -1]]

comp   5.493061445   rms   12.75974144   bad   2114.877638
generators   [240.0000000, 84.66378778]


393216/390625   (2)^17*(3)/(5)^8 wuerschmidt
[[1, -1, 2], [0, 8, 1]]

comp   12.54312332   rms   1.071949828   bad   2115.395301
generators   [1200., 387.8196733]


3125/3072   (5)^5/(2)^10/(3) diesic
[[1, 0, 2], [0, 5, 1]]

comp   7.741412273   rms   4.569472316   bad   2119.954991
generators   [1200., 379.9679493]


20000/19683   (2)^5*(5)^4/(3)^9 quadrafifths
[[1, 1, 1], [0, 4, 9]]

comp   9.785568434   rms   2.504205191   bad   2346.540676
generators   [1200., 176.2822703]


648/625   (2)^3*(3)^4/(5)^4 diminished
[[4, 6, 9], [0, 1, 1]]

comp   6.437751648   rms   11.06006024   bad   2950.938432
generators   [300.0000000, 94.13435693]


4294967296/4271484375   (2)^32/(3)^7/(5)^9 septathirds
[[1, 2, 2], [0, -9, 7]]

comp   18.57395503   rms   .4831084292   bad   3095.692281
generators   [1200., 55.27549315]


531441/524288   (3)^12/(2)^19 pythagorean
[[12, 19, 28], [0, 0, -1]]

comp   13.18334747   rms   1.382394464   bad   3167.444999
generators   [100.0000000, 14.66378756]


top of page bottom of page up down


Message: 5118 - Contents - Hide Contents

Date: Tue, 23 Jul 2002 02:46:59

Subject: Re: Modified best 5-limit geometric list

From: Gene W Smith

On Tue, 23 Jul 2002 02:39:56 -0700 Gene W Smith <genewardsmith@xxxx.xxx>
writes:

> 256/243 (2)^8/(3)^5 quintal (blackwood?) > [[5, 8, 12], [0, 0, -1]]
Which is better? I called the 7-limit version quintal, but they both should have the same name.
> 3125/3072 (5)^5/(2)^10/(3) diesic > [[1, 0, 2], [0, 5, 1]]
Should be magic; I keep copying myself, and never make the change.
top of page bottom of page up down


Message: 5119 - Contents - Hide Contents

Date: Sat, 27 Jul 2002 03:07:15

Subject: 11-limit spacial temperaments list

From: genewardsmith

This may be the first time ever anyone has looked at spacial
temperaments as such, but even if it isn't I doubt there is much of a
market. However, it's useful to have them, and here is a list of
everything satisfying complexity < 10, rms error < 20, and 
badness < 10000. The ordering is by complexity, least to greatest.

33/32   (3)*(11)/(2)^5
[[1, 0, 0, 0, 5], [0, 1, 0, 0, -1], [0, 0, 1, 0, 0], [0, 0, 0, 1, 0]]

comp   2.857236368   rms   18.60142732   bad   3542.232933
generators   [1200., 1885.422018, 2764.728986, 3347.241179]



56/55   (2)^3*(7)/(5)/(11)
[[1, 0, 0, 0, 3], [0, 1, 0, 0, 0], [0, 0, 1, 0, -1], [0, 0, 0, 1, 1]]

comp   2.887939081   rms   10.36903038   bad   2082.947320
generators   [1200., 1906.341694, 2801.423426, 3367.851086]



36/35   (2)^2*(3)^2/(5)/(7)
[[1, 0, 0, 2, 0], [0, 1, 0, 2, 0], [0, 0, 1, -1, 0], [0, 0, 0, 0, 1]]

comp   2.994519510   rms   17.48752667   bad   4210.795253
generators   [1200., 1901.955001, 2810.698904, 4161.072022]



25/24   (5)^2/(2)^3/(3)
[[1, 1, 2, 0, 0], [0, 2, 1, 0, 0], [0, 0, 0, 1, 0], [0, 0, 0, 0, 1]]

comp   3.025592935   rms   19.08172863   bad   4838.048328
generators   [1200., 347.6988830, 3354.254274, 4136.746308]



45/44   (3)^2*(5)/(2)^2/(11)
[[1, 0, 0, 0, -2], [0, 1, 0, 0, 2], [0, 0, 1, 0, 1], [0, 0, 0, 1, 0]]

comp   3.252337250   rms   12.45498136   bad   4532.323997
generators   [1200., 1891.805670, 2766.860826, 3358.676575]



64/63   (2)^6/(3)^2/(7)
[[1, 0, 0, 6, 0], [0, 1, 0, -2, 0], [0, 0, 1, 0, 0], [0, 0, 0, 0, 1]]

comp   3.320882425   rms   7.143746136   bad   2885.316848
generators   [1200., 1909.101900, 2794.916460, 4159.920689]



100/99   (2)^2*(5)^2/(3)^2/(11)
[[1, 0, 0, 0, 2], [0, 1, 0, 0, -2], [0, 0, 1, 0, 2], [0, 0, 0, 1, 0]]

comp   3.652996092   rms   4.697903284   bad   3055.977200
generators   [1200., 1903.569386, 2781.022118, 3369.453721]



49/48   (7)^2/(2)^4/(3)
[[1, 0, 0, 2, 0], [0, 2, 0, 1, 0], [0, 0, 1, 0, 0], [0, 0, 0, 0, 1]]

comp   3.733539376   rms   9.638226848   bad   6991.990407
generators   [1200., 949.3214630, 2778.953548, 4143.957775]



77/75   (7)*(11)/(3)/(5)^2
[[1, 0, 0, 0, 0], [0, 1, 0, 0, 1], [0, 0, 1, 0, 2], [0, 0, 0, 1, -1]]

comp   3.811821523   rms   11.65840053   bad   9382.136804
generators   [1200., 1905.751787, 2804.032044, 3365.661917]



55/54   (5)*(11)/(2)/(3)^3
[[1, 0, 0, 0, 1], [0, 1, 0, 0, 3], [0, 0, 1, 0, -1], [0, 0, 0, 1, 0]]

comp   3.814620480   rms   10.55929831   bad   8528.874811
generators   [1200., 1906.422187, 2777.131166, 3367.833199]



50/49   (2)*(5)^2/(7)^2
[[2, 0, 0, 1, 0], [0, 1, 0, 0, 0], [0, 0, 1, 1, 0], [0, 0, 0, 0, 1]]

comp   3.891820298   rms   8.095281768   bad   7227.629199
generators   [600.0000000, 1901.955001, 2777.569810, 4151.317943]



99/98   (3)^2*(11)/(2)/(7)^2
[[1, 0, 0, 0, 1], [0, 1, 0, 0, -2], [0, 0, 1, 0, 0], [0, 0, 0, 1, 2]]

comp   3.966980247   rms   4.745598368   bad   4662.202897
generators   [1200., 1900.324226, 2785.679522, 3374.171224]



176/175   (2)^4*(11)/(5)^2/(7)
[[1, 0, 0, 0, -4], [0, 1, 0, 0, 0], [0, 0, 1, 0, 2], [0, 0, 0, 1, 1]]

comp   4.013858905   rms   2.093551491   bad   2181.193312
generators   [1200., 1903.085976, 2790.209292, 3371.684758]



225/224   (3)^2*(5)^2/(2)^5/(7)
[[1, 0, 0, -5, 0], [0, 1, 0, 2, 0], [0, 0, 1, 2, 0], [0, 0, 0, 0, 1]]

comp   4.026020476   rms   1.577430795   bad   1668.515370
generators   [1200., 1900.722983, 2783.324928, 4149.834958]



81/80   (3)^4/(2)^4/(5)
[[1, 0, -4, 0, 0], [0, 1, 4, 0, 0], [0, 0, 0, 1, 0], [0, 0, 0, 0, 1]]

comp   4.132030727   rms   5.635084765   bad   6787.630072
generators   [1200., 1896.317430, 3364.336729, 4146.828764]



441/440   (3)^2*(7)^2/(2)^3/(5)/(11)
[[1, 0, 0, 0, -3], [0, 1, 0, 0, 2], [0, 0, 1, 0, -1], [0, 0, 0, 1, 2]]

comp   4.260379115   rms   .8994907037   bad   1262.518976
generators   [1200., 1901.430980, 2786.270044, 3367.341179]



385/384   (5)*(7)*(11)/(2)^7/(3)
[[1, 0, 0, 0, 7], [0, 1, 0, 0, 1], [0, 0, 1, 0, -1], [0, 0, 0, 1, -1]]

comp   4.322037437   rms   1.030496055   bad   1554.135766
generators   [1200., 1901.354659, 2784.612746, 3367.124941]



126/125   (2)*(3)^2*(7)/(5)^3
[[1, 0, 0, -1, 0], [0, 1, 0, -2, 0], [0, 0, 1, 3, 0], [0, 0, 0, 0, 1]]

comp   4.396397238   rms   2.682546126   bad   4405.871537
generators   [1200., 1901.955001, 2790.776728, 4152.129400]



121/120   (11)^2/(2)^3/(3)/(5)
[[1, 0, 1, 0, 2], [0, 1, 1, 0, 1], [0, 0, 2, 0, 1], [0, 0, 0, 1, 0]]

comp   4.517667160   rms   4.072710005   bad   7663.984940
generators   [1200., 1901.955001, -156.9226966, 3367.927957]



896/891   (2)^7*(7)/(3)^4/(11)
[[1, 0, 0, 0, 7], [0, 1, 0, 0, -4], [0, 0, 1, 0, 0], [0, 0, 0, 1, 1]]

comp   5.006104786   rms   1.936418735   bad   6088.340810
generators   [1200., 1903.925434, 2788.284144, 3369.893224]



540/539   (2)^2*(3)^3*(5)/(7)^2/(11)
[[1, 0, 0, 0, 2], [0, 1, 0, 0, 3], [0, 0, 1, 0, 1], [0, 0, 0, 1, -2]]

comp   5.187443078   rms   .7484217537   bad   2811.338392
generators   [1200., 1901.732843, 2785.955790, 3369.689857]



3025/3024   (5)^2*(11)^2/(2)^4/(3)^3/(7)
[[1, 0, 0, 0, 2], [0, 1, 0, 1, 2], [0, 0, 1, 0, -1], [0, 0, 0, 2, 1]]

comp   5.895318737   rms   .1081738857   bad   770.2982011
generators   [1200., 1901.955001, 2786.170613, 733.4354526]



1375/1372   (5)^3*(11)/(2)^2/(7)^3
[[1, 0, 0, 0, 2], [0, 1, 0, 0, 0], [0, 0, 1, 0, -3], [0, 0, 0, 1, 3]]

comp   6.019980961   rms   .5552206980   bad   4389.764646
generators   [1200., 1901.851244, 2785.575886, 3369.229406]



9801/9800   (3)^4*(11)^2/(2)^3/(5)^2/(7)^2
[[2, 0, 0, 0, 3], [0, 1, 0, 0, -2], [0, 0, 1, 0, 1], [0, 0, 0, 1, 1]]

comp   6.558685862   rms   .2935901386e-1   bad   356.3080343
generators   [600.0000000, 1901.942581, 2786.331654, 3368.843848]



5632/5625   (2)^9*(11)/(3)^2/(5)^4
[[1, 0, 0, 0, -9], [0, 1, 0, 0, 2], [0, 0, 1, 0, 4], [0, 0, 0, 1, 0]]

comp   6.993059136   rms   .2430345239   bad   4064.470495
generators   [1200., 1902.129577, 2786.808340, 3369.064493]



2401/2400   (7)^4/(2)^5/(3)/(5)^2
[[1, 1, 1, 2, 0], [0, 2, 1, 1, 0], [0, 0, 2, 1, 0], [0, 0, 0, 0, 1]]

comp   7.001210638   rms   .1009378214   bad   1697.929473
generators   [1200., 350.9685108, 617.6855869, 4151.277988]



4000/3993   (2)^5*(5)^3/(3)/(11)^3
[[1, 2, 0, 0, 1], [0, 3, 0, 0, -1], [0, 0, 1, 0, 1], [0, 0, 0, 1, 0]]

comp   7.277091769   rms   .4609639205   bad   9407.109365
generators   [1200., -165.9852708, 2785.912380, 3368.915093]



160083/160000   (3)^3*(7)^2*(11)^2/(2)^8/(5)^4
[[1, 0, 0, 0, 4], [0, 2, 0, 0, -3], [0, 0, 1, 0, 2], [0, 0, 0, 1, -1]]

comp   8.009661546   rms   .1093194687   bad   3603.863536
generators   [1200., 950.9520900, 2786.387123, 3368.712970]



200704/200475   (2)^12*(7)^2/(3)^6/(5)^2/(11)
[[1, 0, 0, 0, 12], [0, 1, 0, 0, -6], [0, 0, 1, 0, -2], [0, 0, 0, 1,
2]]

comp   8.318381546   rms   .2154655877   bad   8581.675756
generators   [1200., 1902.164272, 2786.650868, 3368.943828]



4375/4374   (5)^4*(7)/(2)/(3)^7
[[1, 0, 0, 1, 0], [0, 1, 0, 7, 0], [0, 0, 1, -4, 0], [0, 0, 0, 0, 1]]

comp   8.514085954   rms   .4939105833e-1   bad   2209.726294
generators   [1200., 1901.970692, 2786.247899, 4151.309660]



41503/41472   (7)^3*(11)^2/(2)^9/(3)^4
[[1, 0, 0, 1, 3], [0, 1, 0, 0, 2], [0, 0, 1, 0, 0], [0, 0, 0, 2, -3]]

comp   8.658539469   rms   .1810507469   bad   8810.966005
generators   [1200., 1901.922750, 2786.182918, 1084.258868]



131072/130977   (2)^17/(3)^5/(7)^2/(11)
[[1, 0, 0, 0, 17], [0, 1, 0, 0, -5], [0, 0, 1, 0, 0], [0, 0, 0, 1,
-2]]

comp   8.760551242   rms   .1254478302   bad   6473.219372
generators   [1200., 1902.082652, 2786.470618, 3369.041318]



496125/495616   (3)^4*(5)^3*(7)^2/(2)^12/(11)^2
[[1, 0, 0, 0, -6], [0, 1, 0, 0, 2], [0, 0, 2, 0, 3], [0, 0, 0, 1, 1]]

comp   8.950239742   rms   .1701889922   bad   9774.730881
generators   [1200., 1901.809793, 1393.008192, 3368.566607]



43923/43904   (3)*(11)^4/(2)^7/(7)^3
[[1, 0, 0, 3, 4], [0, 1, 0, 3, 2], [0, 0, 1, 0, 0], [0, 0, 0, 4, 3]]

comp   9.113321395   rms   .9348367894e-1   bad   5876.506598
generators   [1200., 1901.925304, 2786.274940, -1484.226778]



180224/180075   (2)^14*(11)/(3)/(5)^2/(7)^4
[[1, 0, 0, 0, -14], [0, 1, 0, 0, 1], [0, 0, 1, 0, 2], [0, 0, 0, 1, 4]]

comp   9.183316130   rms   .1339543440   bad   8748.920624
generators   [1200., 1902.050698, 2786.516624, 3369.087298]



151263/151250   (3)^2*(7)^5/(2)/(5)^4/(11)^2
[[1, 0, 0, 1, 2], [0, 1, 0, 0, 1], [0, 0, 1, 0, -2], [0, 0, 0, 2, 5]]

comp   9.621494742   rms   .1438141844e-1   bad   1185.808221
generators   [1200., 1901.953231, 2786.325998, 1084.404501]


top of page bottom of page up down


Message: 5120 - Contents - Hide Contents

Date: Sun, 28 Jul 2002 23:03:48

Subject: 11-limit planar temperament list

From: Gene W Smith

This is limited by rms error < 20, complexity < 40 and badness < 5000.
There are a lot of 11-limit commas and therefore a lot of reasonable
systems, and the badness is set so as to limit the number, but it's
pretty arbitrary otherwise. Of course if we were to look at, for example,
spacial temperaments in the 19-limit, it would be even more out of hand
with exploding numbers of systems.

[1, 1, -2, -2, 2, -2, -2, 5, 1, -6]   {36/35, 56/55}
[[1, 0, 0, 2, 5], [0, 1, 0, 2, 2], [0, 0, 1, -1, -2]]

comp   8.612269456   rms   18.93178096   bad   4120.837552
generators   [1200., 1905.077357, 2819.545579]



[1, -2, 1, -2, 2, -2, 5, -2, -1, -6]   {56/55, 45/44}
[[1, 0, 0, -5, -2], [0, 1, 0, 2, 2], [0, 0, 1, 2, 1]]

comp   9.294368925   rms   18.94576168   bad   4989.555266
generators   [1200., 1894.806413, 2782.197962]



[1, 0, -1, 2, -2, 2, -6, 9, -6, 6]   {56/55, 64/63}
[[1, 0, 0, 6, 9], [0, 1, 0, -2, -2], [0, 0, 1, 0, -1]]

comp   9.571162783   rms   11.60092948   bad   3287.793582
generators   [1200., 1911.208074, 2806.289813]



[1, -3, 2, 2, -2, 2, 1, 2, -8, 6]   {56/55, 100/99}
[[1, 0, 0, -1, 2], [0, 1, 0, -2, -2], [0, 0, 1, 3, 2]]

comp   10.48363973   rms   12.23674678   bad   4354.579196
generators   [1200., 1909.065474, 2795.586754]



[2, 0, -2, -1, 1, -1, -4, 10, -4, -3]   {56/55, 49/48}
[[1, 0, 0, 2, 5], [0, 2, 0, 1, 1], [0, 0, 1, 0, -1]]

comp   10.63096771   rms   13.11941875   bad   4834.444644
generators   [1200., 951.4862286, 2793.240998]



[1, 0, 2, 2, -2, -4, -6, 2, 12, -8]   {64/63, 100/99}
[[1, 0, 0, 6, 2], [0, 1, 0, -2, -2], [0, 0, 1, 0, 2]]

comp   11.40622127   rms   7.842944503   bad   3446.145599
generators   [1200., 1909.527660, 2790.324320]



[0, 3, -3, 0, 0, 0, -7, 7, 2, 0]   {56/55, 128/125}
[[3, 0, 7, 0, 2], [0, 1, 0, 0, 0], [0, 0, 0, 1, 1]]

comp   11.57779068   rms   10.41216358   bad   4749.033317
generators   [400.0000000, 1905.928440, 3366.473576]



[0, 0, 2, 0, 4, -4, 0, -11, 12, 2]   {64/63, 50/49}
[[2, 0, 11, 12, 0], [0, 1, -2, -2, 0], [0, 0, 0, 0, 1]]

comp   11.92510945   rms   9.546325800   bad   4688.049473
generators   [600.0000000, 1907.232522, 4157.670515]



[2, -2, 4, 0, -4, 4, -1, 4, -2, -2]   {50/49, 99/98}
[[2, 0, 0, 1, 4], [0, 1, 0, 0, -2], [0, 0, 1, 1, 2]]

comp   12.70642452   rms   8.095335006   bad   4659.005552
generators   [600.0000000, 1901.942581, 2777.587752]



[1, -2, 4, -2, 2, 4, 5, -9, -2, 8]   {176/175, 99/98}
[[1, 0, 0, -5, -9], [0, 1, 0, 2, 2], [0, 0, 1, 2, 4]]

comp   13.87057757   rms   4.770738943   bad   3418.393201
generators   [1200., 1900.667338, 2786.672948]



[1, -2, 2, -2, -2, 8, 5, 2, -14, 6]   {100/99, 225/224}
[[1, 0, 0, -5, 2], [0, 1, 0, 2, -2], [0, 0, 1, 2, 2]]

comp   14.53451469   rms   4.698274549   bad   3783.900689
generators   [1200., 1903.626101, 2781.116797]



[0, 0, 1, 0, -4, 10, 0, 4, -13, 12]   {81/80, 126/125}
[[1, 0, -4, -13, 0], [0, 1, 4, 10, 0], [0, 0, 0, 0, 1]]

comp   15.10180563   rms   5.640679273   bad   4999.235518
generators   [1200., 1896.439145, 4147.010107]



[2, -3, 4, 4, -4, -2, -5, 4, 4, -2]   {100/99, 245/242}
[[1, 0, 1, 4, 4], [0, 1, 0, -2, -2], [0, 0, 2, 3, 4]]

comp   15.28049091   rms   5.288631285   bad   4827.102898
generators   [1200., 1902.349260, 790.0166976]



[1, -3, 5, 2, -2, -4, 1, -5, 10, -8]   {176/175, 126/125}
[[1, 0, 0, -1, -5], [0, 1, 0, -2, -2], [0, 0, 1, 3, 5]]

comp   15.38428372   rms   2.743964593   bad   2547.250784
generators   [1200., 1902.348538, 2791.393074]



[1, 3, 2, -3, -2, 0, -5, 2, 16, -16]   {100/99, 385/384}
[[1, 0, 0, 5, 2], [0, 1, 0, 3, -2], [0, 0, 1, -3, 2]]

comp   15.78362763   rms   4.716489415   bad   4668.054634
generators   [1200., 1903.304566, 2780.387947]



[2, 3, 1, -1, 1, 2, -11, 3, 10, 4]   {176/175, 121/120}
[[1, 0, 1, 4, 2], [0, 1, 1, -1, 1], [0, 0, 2, -3, 1]]

comp   15.78752896   rms   4.078252712   bad   4038.866834
generators   [1200., 1902.084929, -156.7887088]



[1, -2, -3, -2, -1, -4, 5, 12, -9, -19]   {225/224, 385/384}
[[1, 0, 0, -5, 12], [0, 1, 0, 2, -1], [0, 0, 1, 2, -3]]

comp   16.93706091   rms   1.584465965   bad   1870.587544
generators   [1200., 1900.698768, 2783.222881]



[1, -2, 3, -2, 6, -6, 5, -13, 11, -4]   {225/224, 441/440}
[[1, 0, 0, -5, -13], [0, 1, 0, 2, 6], [0, 0, 1, 2, 3]]

comp   17.12658309   rms   1.882869462   bad   2285.583154
generators   [1200., 1900.058168, 2783.119618]



[1, -3, -4, 2, 3, -1, 1, 8, -20, 13]   {126/125, 385/384}
[[1, 0, 0, -1, 8], [0, 1, 0, -2, 3], [0, 0, 1, 3, -4]]

comp   17.97763590   rms   3.571482050   bad   4894.179827
generators   [1200., 1900.444933, 2788.289556]



[3, 0, -3, 1, 4, 1, -10, 11, -10, 17]   {441/440, 385/384}
[[1, 1, 0, 3, 5], [0, 3, 0, -1, 4], [0, 0, 1, 0, -1]]

comp   18.38423633   rms   1.217389384   bad   1764.182444
generators   [1200., 233.6891156, 2784.876116]



[0, 2, -2, 4, -4, -8, -11, 11, 14, -16]   {176/175, 896/891}
[[2, 0, 11, 0, 14], [0, 1, -2, 0, -4], [0, 0, 0, 1, 1]]

comp   20.07262936   rms   2.568435319   bad   4636.382920
generators   [600.0000000, 1904.449829, 3372.039360]



[3, 1, 5, -3, 3, 6, -6, -6, 8, 12]   {176/175, 540/539}
[[1, 0, 0, 2, -2], [0, 1, 0, 1, 1], [0, 0, 3, -1, 5]]

comp   20.79255579   rms   2.292930734   bad   4520.230946
generators   [1200., 1902.851684, 929.9710573]



[1, -1, 1, 6, -10, 4, -10, 17, -7, 2]   {441/440, 896/891}
[[1, 0, 0, 10, 17], [0, 1, 0, -6, -10], [0, 0, 1, 1, 1]]

comp   21.23275110   rms   2.274972896   bad   4725.980212
generators   [1200., 1903.401073, 2788.404311]



[4, -2, 0, -1, 10, -5, -5, -2, 1, 13]   {441/440, 243/242}
[[1, 1, 1, 2, 2], [0, 2, 1, 1, 5], [0, 0, 2, 1, 0]]

comp   22.01175542   rms   1.462086952   bad   3323.608780
generators   [1200., 350.4014207, 617.6277206]



[2, -4, 0, -4, 5, -10, 10, -1, 2, -23]   {225/224, 243/242}
[[1, 1, 0, -3, 2], [0, 2, 0, 4, 5], [0, 0, 1, 2, 0]]

comp   23.21703942   rms   1.809515516   bad   4699.800337
generators   [1200., 350.1386568, 2783.638546]



[4, -2, -6, -1, 3, -3, -5, 23, -19, -2]   {385/384, 1375/1372}
[[1, 1, 1, 2, 5], [0, 2, 1, 1, 0], [0, 0, 2, 1, -3]]

comp   25.85062167   rms   1.077522792   bad   3661.035538
generators   [1200., 350.6699179, 616.8206966]



[2, -4, 6, 8, -12, 0, -9, 12, 3, -6]   {441/440, 8019/8000}
[[2, 0, 0, 9, 12], [0, 1, 0, -4, -6], [0, 0, 1, 2, 3]]

comp   27.40496903   rms   .9167078854   bad   3604.161607
generators   [600.0000000, 1901.338331, 2786.378136]



[5, -4, -3, -3, 9, -9, 0, 10, -8, -6]   {540/539, 1375/1372}
[[1, 0, 0, 0, 2], [0, 1, 3, 3, 0], [0, 0, 5, 4, -3]]

comp   27.81436519   rms   .7561992066   bad   3085.383114
generators   [1200., 1901.732844, -583.8771683]



[4, 4, 0, -6, -2, -2, -11, 17, 17, -31]   {385/384, 9801/9800}
[[2, 1, 0, 7, 8], [0, 2, 0, 3, -1], [0, 0, 1, -1, 0]]

comp   28.20690243   rms   1.049393382   bad   4434.317767
generators   [600.0000000, 650.6253937, 2784.681994]



[2, -5, 8, 0, 4, -10, 6, -18, 21, -12]   {441/440, 3136/3125}
[[1, 0, 0, -3, -9], [0, 1, 0, 0, 2], [0, 0, 2, 5, 8]]

comp   29.06943484   rms   .9765850405   bad   4449.400901
generators   [1200., 1901.674054, 1393.524953]



[6, 0, 6, -10, -2, 10, -1, 10, 1, -17]   {540/539, 4000/3993}
[[2, 1, 0, 2, 3], [0, 3, 0, 5, -1], [0, 0, 1, 0, 1]]

comp   32.94779996   rms   .7610570219   bad   4742.236934
generators   [600.0000000, 433.9278373, 2785.854450]



[4, -8, 12, 4, -12, 12, 1, 5, -13, 8]   {1375/1372, 6250/6237}
[[4, 0, 0, -1, 5], [0, 1, 0, -1, -3], [0, 0, 1, 2, 3]]

comp   37.88323708   rms   .5572687387   bad   4922.462152
generators   [300.0000000, 1901.870393, 2785.537590]



[2, 8, -6, -14, 10, -2, -2, 5, 14, -25]   {3025/3024, 4375/4374}
[[2, 0, 0, 2, 5], [0, 1, 0, 7, 5], [0, 0, 1, -4, -3]]

comp   38.57526083   rms   .1120888160   bad   1035.939660
generators   [600.0000000, 1901.942581, 2786.188555]


top of page bottom of page up down


Message: 5122 - Contents - Hide Contents

Date: Mon, 29 Jul 2002 04:09:57

Subject: A {385/384, 441/440} temperament scale

From: Gene W Smith

In case anyone thinks these temperaments are useless, here is a scale in
the 190-et
version of this 11-limit planar temperament. It has 34 intervals and 46
triads:

! [13, 24, 13, 24, 18, 24, 13, 24, 13, 24]
! suzz.scl
!
{385/384, 441/440} suzz in 190-et version
10
!
82.10526316
233.6842105
315.7894737
467.3684211
581.0526316
732.6315789
814.7368421
966.3157895
1048.421053
2/1

The 72-et version is isomoprhic, with pattern [5,9,5,9,7,9,5,9,5,9]. Of
all the 126 scale patterns, this one comes up best for in terms of both
intervals and triads.


top of page bottom of page up down


Message: 5123 - Contents - Hide Contents

Date: Mon, 29 Jul 2002 21:56:35

Subject: Re: A 5-limit, "geometric" temperament list

From: wallyesterpaulrus

--- In tuning-math@y..., "hs" <straub@d...> wrote:
>> 81/80 (3)^4/(2)^4/(5) meantone >> [[1, 0, -4], [0, 1, 4]] >
> Newbie question: what is the meaning of this vector notation? From
what I read so
> far, all I can imagine are unison vectors determining a periodicity block. Something > like this? > > > Hans Straub
Luckily there are no wedgies here, so i think i can explain this one. Meantone temperament takes the just lattice and modifies it by "tempering out" the interval 81/80. that is, all the consonant intervals, the "rungs" of the just lattice, are detuned slightly so that 81/80 comes out to a unison. (3)^4/(2)^4/(5) is simply the prime factorization of 81/80. 81 = (3) ^4; 1/80 = 1/(2)^4/(5), get it? Then the next line tells you the mapping of the primes in terms of the generators. You left out this line, which was included with the ones you report below: generators [1200., 1896.164845] (these are in cents) So . . . [1, 0, -4], [0, 1, 4] would be better arranged like this: [1] [0] [0] [1] [-4] [4] the first row tells you that the 2/1 is represented by [1]*1200 + [0] *1896; the second row tells you that the 3/1 is represented by [0] *1200 + [1]*1896; the third row tells you that the 5/1 is represented by [-4]*1200 + [4]*1896. Making sense? p.s. i tried to reply directly to the freelists list, but i got the following error message: The original message was received at Mon, 29 Jul 2002 21:21:32 GMT from user10.acadian-asset.com [208.253.47.10] (may be forged) ----- The following addresses had permanent fatal errors ----- <tuning-math@xxxxxxxxx.xxx> ----- Transcript of session follows ----- ... while talking to turing.freelists.org. [206.53.239.180]:
>>> RCPT To:<tuning-math@xxxxxxxxx.xxx>
<<< 554 Service unavailable; [199.171.54.106] blocked using relays.osirusoft.com, reason: emarketing * [with cont.] (Wayb.) (services (appending, also look for 'opt-out')) 554 <tuning- math@xxxxxxxxx.xxx>... Service unavailable anyone know what's up?
top of page bottom of page up down


Message: 5124 - Contents - Hide Contents

Date: Tue, 30 Jul 2002 01:22:06

Subject: Three {126/125, 176/175} planar temperament scales

From: Gene W Smith

These two commas go well together, and one might consider the result an
11-limit extension of starling. I checked over 4000 scales to find the
three best with these particular steps:

49 intervals 83 triads

! starra.scl (inverse of starrb.scl)
! [22, 34, 29, 22, 22, 41, 22, 22, 29, 22, 34, 29]
12 note {126/125, 176/175} scale, 328-et version 
12
!
80.48780488
204.8780488
310.9756098
391.4634146
471.9512195
621.9512195
702.4390244
782.9268293
889.0243902
969.5121951
1093.902439
2/1

49 intervals 83 triads

! starrb.scl (inverse of starra.scl)
! [22, 22, 29, 34, 22, 29, 34, 22, 29, 22, 22, 41]
12 note {126/125, 176/175} scale, 328-et version 
12
!
80.48780488
160.9756098
267.0731707
391.4634146
471.9512195
578.0487805
702.4390244
782.9268293
889.0243902
969.5121951
1050.000000
2/1

49 intervals 82 triads

! starrc.scl 
! [22, 22, 41, 22, 22, 29, 34, 22, 29, 22, 34, 29]
12 note {126/125, 176/175} scale, 328-et version 
12
!
80.48780488
160.9756098
310.9756098
391.4634146
471.9512195
578.0487805
702.4390244
782.9268293
889.0243902
969.5121951
1093.902439
2/1


top of page bottom of page up

Previous Next

5000 5050 5100 5150 5200 5250 5300 5350 5400 5450 5500 5550 5600 5650 5700 5750 5800 5850 5900 5950

5100 - 5125 -

top of page